MARKSCHEME

November 2007

MATHEMATICS

Standard Level

Paper 1

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of IB Cardiff.

Instructions to Examiners

Abbreviations

- M Marks awarded for attempting to use a correct **Method**; working must be seen.
- (M) Marks awarded for **Method**; may be implied by **correct** subsequent working.
- A Marks awarded for an **Answer** or for **Accuracy**: often dependent on preceding **M** marks.
- (A) Marks awarded for an **Answer** or for **Accuracy**; may be implied by **correct** subsequent working.
- **R** Marks awarded for clear **Reasoning**.
- N Marks awarded for **correct** answers if **no** working shown.
- **AG** Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Write the marks in red on candidates' scripts, in the right hand margin.

- Show the **breakdown** of individual marks awarded using the abbreviations M1, A1, etc.
- Write down the total for each **question** (at the end of the question) and **circle** it.

2 Method and Answer/Accuracy marks

- Do **not** automatically award full marks for a correct answer; all working **must** be checked, and marks awarded according to the markscheme.
- It is not possible to award *M0* followed by *A1*, as *A* mark(s) depend on the preceding *M* mark(s), if any.
- Where *M* and *A* marks are noted on the same line, *e.g. M1A1*, this usually means *M1* for an **attempt** to use an appropriate method (*e.g.* substitution into a formula) and *A1* for using the **correct** values.
- Where the markscheme specifies (M2), N3, etc., do **not** split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

3 N marks

If **no** working shown, award **N** marks for **correct** answers.

- Do **not** award a mixture of *N* and other marks.
- There may be fewer N marks available than the total of M, A and R marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- For consistency within the markscheme, N marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do **not** award the *N* marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the *N* marks for the correct answer.

4 Implied marks

Implied marks appear in **brackets e.g.** (M1), and can only be awarded if **correct** work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks **without** brackets can only be awarded for work that is **seen**.

5 Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer *FT* marks.
- If the error leads to an inappropriate value (*e.g.* probability greater than 1, use of r > 1 for the sum of an infinite GP, $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further *A* marks can be awarded, but *M* marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). Apply a MR penalty of 1 mark to that question. Award the marks as usual and then write -1(MR) next to the total. Subtract 1 mark from the total for the question. A candidate should be penalized only once for a particular mis-read.

- If the question becomes much simpler because of the *MR*, then use discretion to award fewer marks.
- If the MR leads to an inappropriate value (e.g. $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. The mark should be labelled (d) and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- 5 -

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by **EITHER** . . . **OR**.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of **notation**.
- In the markscheme, equivalent **numerical** and **algebraic** forms will generally be written in brackets immediately following the answer.
- In the markscheme, **simplified** answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x) = 2\sin(5x - 3)$, the markscheme gives:

$$f'(x) = 2\cos(5x-3)$$
 5 = $10\cos(5x-3)$

Award A1 for $2\cos(5x-3)$ 5, even if $10\cos(5x-3)$ is not seen.

10 Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy.

- **Rounding errors**: only applies to final answers not to intermediate steps.
- Level of accuracy: when this is not specified in the question the general rule applies: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Candidates should be penalized **once only IN THE PAPER** for an accuracy error (AP). Award the marks as usual then write (AP) against the answer. On the **front** cover write -1(AP). Deduct 1 mark from the total for the paper, not the question.

- If a final correct answer is incorrectly rounded, apply the AP.
- If the level of accuracy is not specified in the question, apply the *AP* for correct answers not given to three significant figures.
- Intermediate values are sometimes written as 3.24(741). This indicates that using 3.24 (or 3.25) is acceptable, but the more accurate value is 3.24741. The digits in brackets are not required for the marks. If candidates work with fewer than three significant figures, this could lead to an **AP**.

If there is no working shown, and answers are given to the correct two significant figures, apply the **AP**. However, do **not** accept answers to one significant figure without working.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

(a)

Age range	Frequency	Mid-interval value
$0 \le age < 20$	40	10
$20 \le age < 40$	70	30
$40 \le age < 60$	100	50
$60 \le age < 80$	50	70
$80 \le age \le 100$	10	90

AIAI N2

(b) For attempting to find
$$\sum f x$$
 (M1)

Correct substitution (A1)

e.g.
$$40 \times 10 + ... + 10 \times 90 = 11900$$

For dividing by 270 (M1)

e.g.
$$\frac{11900}{270}$$

Mean = 44.1 A1 N4

QUESTION 2

(a)
$$\frac{19}{120}$$
 (= 0.158) A1 NI

(b)
$$35 - (8 + 5 + 7)$$
 (=15) (M1)
Probability = $\frac{15}{120}$ (= $\frac{3}{24}$ = $\frac{1}{8}$ = 0.125) A1 N2

(c) Number studying
$$= 76$$
 (A1)

Number not studying =
$$120$$
 – number studying = 44 (M1)

Probability =
$$\frac{44}{120}$$
 $\left(= \frac{11}{30} = 0.367 \right)$ **A1 N3**

A1A1A1 N3

(b)
$$\left(\frac{4}{10} \times \frac{6}{9}\right) + \left(\frac{6}{10} \times \frac{4}{9}\right)$$
 MIMI

- 8 -

$$=\frac{48}{90} \left(\frac{8}{15}, 0.533\right)$$
 A1 N1

QUESTION 4

(a)
$$\int_{\frac{3\pi}{2}}^{2\pi} \cos x \, \mathrm{d}x \qquad \qquad A1 \qquad \qquad N1$$

(b) Area of
$$A = 1$$
 A1 N1

(c) Evidence of attempting to find the area of B
$$e.g. \int_{\frac{4\pi}{3}}^{\frac{3\pi}{2}} y \, dx, -0.134$$

Evidence of recognising that area B is under the curve/integral is negative (M1)

$$e.g. - \int_{\frac{4\pi}{3}}^{\frac{3\pi}{2}} y \, dx, \quad \int_{\frac{3\pi}{2}}^{\frac{4\pi}{3}} \cos x \, dx, \quad \left| \int_{\frac{4\pi}{3}}^{\frac{3\pi}{2}} \cos x \, dx \right|$$

Area of B = 0.134
$$\left(\text{accept } \frac{2-\sqrt{3}}{2}\right)$$
 (A1)

Total Area = 1 + 0.134

$$=1.13 \left(\operatorname{accept} \frac{4-\sqrt{3}}{2}\right) \qquad \qquad A1 \qquad \qquad N4$$

For taking three ratios of consecutive terms (a)

$$\frac{54}{18} = \frac{162}{54} = \frac{486}{162} \quad (=3)$$

hence geometric

AG

N0

*N*2

*N*2

(M1)

(b) (i) (A1)

 $u_n = 18 \times 3^{n-1}$ A1

For a valid attempt to solve $18 \times 3^{n-1} = 1062882$ (M1)

e.g. trial and error, logs n = 11AI

QUESTION 6

(a) 3, 6, 9 A1*N1*

Evidence of using the sum of an AP (b) (i) *M1*

e.g. $\frac{20}{2} 2 \times 3 + (20 - 1) \times 3$

$$\sum_{n=1}^{20} 3n = 630$$
 A1 NI

METHOD 1 (ii)

Correct calculation for $\sum_{n=1}^{100} 3n$ (A1)

e.g.
$$\frac{100}{2}(2\times3+99\times3), 15150$$

Evidence of subtraction (M1)

e.g. 15150-630

$$\sum_{n=21}^{100} 3n = 14520 AI N2$$

METHOD 2

Recognising that first term is 63, the number of terms is 80 (A1)(A1)

e.g.
$$\frac{80}{2}$$
(63+300), $\frac{80}{2}$ (126+79×3)

$$\sum_{n=21}^{100} 3n = 14520$$
A1 N2

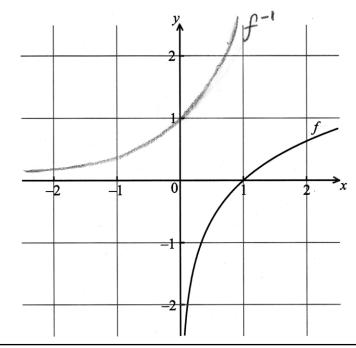
(a) (i)
$$f(a) = 1$$

A1

N1

(ii)
$$f(1) = 0$$

A1


N1

(iii)
$$f(a^4) = 4$$

A1

N1

A1A1A1

N3

Note: Award AI for approximate reflection of f in y = x, AI for y intercept at 1, and AI for curve asymptotic to x-axis.

QUESTION 8

$$f'(x) = 12x^2 + 2$$

When
$$x = 1$$
, $f(1) = 6$ (seen anywhere)

When
$$x=1$$
, $f'(1)=14$

e.g.
$$\frac{-1}{14}x$$
, $\frac{1}{-14}$, -0.0714

Equation is
$$y-6=-\frac{1}{14}(x-1)$$
 $\left(y=-\frac{1}{14}x+\frac{85}{14},\ y=-0.0714x+6.07\right)$

N4

(a)
$$\frac{dy}{dx} = 3\cos 3x$$

A1

N1

(b)
$$\frac{dy}{dx} = \frac{x}{\cos^2 x} + \tan x$$
 accept $x \sec^2 x + \tan x$

A1A1

*N*2

(c) **METHOD 1**

Evidence of using the quotient rule

(M1)

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x \times \frac{1}{x} - \ln x}{x^2}$$

A1A1

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1 - \ln x}{x^2}$$

N3

METHOD 2

$$y = x^{-1} \ln x$$

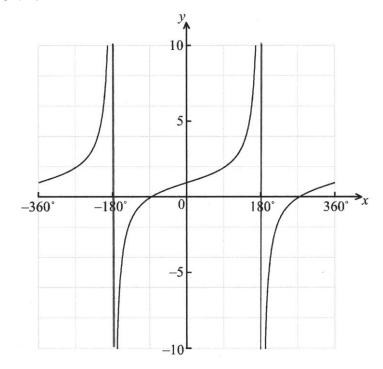
Evidence of using the product rule

(M1)

$$\frac{dy}{dx} = x^{-1} \times \frac{1}{x} + \ln x (-1)(x^{-2})$$

AIAI

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x^2} - \frac{\ln x}{x^2}$$


N3

A1A1

NIN1

QUESTION 10

(a)

Correct asymptotes AIA1 N2

(b) (i) Period = 360° (accept 2π)

A1 N1

(ii) $f(90^{\circ}) = 2$ A1 NI

Notes: Penalise *1 mark* for any additional values.

 270° , -90°

(c)

Penalise *1 mark* for correct answers given in radians $\left(\frac{3\pi}{2}, -\frac{\pi}{2}, \text{ or } 4.71, -1.57\right)$.

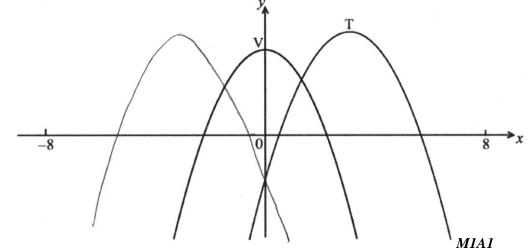
(a) (i)
$$h = 3$$

A1

N1

(ii)
$$k = 1$$

A1


N1

(b)
$$g(x) = f(x-3)+1$$
, $5-(x-3)^2+1$, $6-(x-3)^2$, $-x^2+6x-3$

A2

*N*2

Note: Award *M1* for attempt to reflect through *y*-axis, **A1** for vertex at approximately (-3, 6).

QUESTION 12

(a) For summing to 1 (M1)
$$e.g. 0.1 + a + 0.3 + b = 1$$

a + b = 0.6

A1

*N*2

*N*2

(b) evidence of correctly using
$$E(X) = \sum x f(x)$$
 (M1)

e.g. $0 \times 0.1 + 1 \times a + 2 \times 0.3 + 3 \times b$, 0.1 + a + 0.6 + 3b = 1.5

Correct equation 0 + a + 0.6 + 3b = 1.5 (a + 3b = 0.9)(A1)

Solving simultaneously gives

a = 0.45 b = 0.15

A1A1

N3

N4

QUESTION 13

(a) For finding second, third and fourth terms correctly (A1)(A1)(A1)

Second term
$$\binom{4}{1}e^3\left(\frac{1}{e}\right)$$
, third term $\binom{4}{2}e^2\left(\frac{1}{e}\right)^2$, fourth term $\binom{4}{3}e\left(\frac{1}{e}\right)^3$

For finding first and last terms, and adding them to their three terms (A1)

$$\begin{pmatrix} e + \frac{1}{e} \end{pmatrix}^4 = \begin{pmatrix} 4 \\ 0 \end{pmatrix} e^4 + \begin{pmatrix} 4 \\ 1 \end{pmatrix} e^3 \left(\frac{1}{e} \right) + \begin{pmatrix} 4 \\ 2 \end{pmatrix} e^2 \left(\frac{1}{e} \right)^2 + \begin{pmatrix} 4 \\ 3 \end{pmatrix} e \left(\frac{1}{e} \right)^3 + \begin{pmatrix} 4 \\ 4 \end{pmatrix} \left(\frac{1}{e} \right)^4$$

$$\begin{pmatrix} e + \frac{1}{e} \end{pmatrix}^4 = e^4 + 4e^3 \left(\frac{1}{e} \right) + 6e^2 \left(\frac{1}{e} \right)^2 + 4e \left(\frac{1}{e} \right)^3 + \left(\frac{1}{e} \right)^4 \left(= e^4 + 4e^2 + 6 + \frac{4}{e^2} + \frac{1}{e^4} \right)$$

(b)
$$\left(e - \frac{1}{e}\right)^4 = e^4 - 4e^3 \left(\frac{1}{e}\right) + 6e^2 \left(\frac{1}{e}\right)^2 - 4e \left(\frac{1}{e}\right)^3 + \left(\frac{1}{e}\right)^4 \left(= e^4 - 4e^2 + 6 - \frac{4}{e^2} + \frac{1}{e^4}\right)$$
 (A1)
Adding gives $2e^4 + 12 + \frac{2}{e^4} \left(\text{accept } 2\binom{4}{0}e^4 + 2\binom{4}{2}e^2 \left(\frac{1}{e}\right)^2 + 2\binom{4}{4} \left(\frac{1}{e}\right)^4\right)$ N2

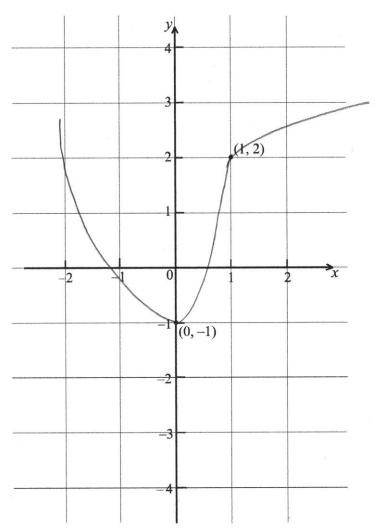
QUESTION 14

(a)
$$1 = A_0 e^{5k}$$
 A1

Attempt to find
$$\frac{dA}{dt}$$
 (M1)

$$e.g. \frac{\mathrm{d}A}{\mathrm{d}t} = k A_0 e^{kt}$$

Correct equation
$$0.2 = k A_0 e^{5k}$$


For any valid attempt to solve the system of equations *M1*

e.g.
$$\frac{0.2}{1} = \frac{k A_0 e^{5k}}{A_0 e^{5k}}$$

$$k = 0.2 AG NO$$

(b)
$$100 = \frac{1}{e} e^{0.2t}$$
 AI

$$t = \frac{\ln 100 + 1}{0.2} \quad (=28.0)$$
 A1 N1

A1A1A1A1A1A1

N6

Notes: On interval [-2, 0], award AI for decreasing, AI for concave up.

On interval [0, 1], award AI for increasing, AI for concave up.

On interval [1, 2], award AI for change of concavity, AI for concave down.

- 15 -